We’ve learned about the widely known benefits of exercise. It enhances and maintains your overall health and wellness as well as physical fitness. It can also help in increasing body growth and development, strengthening muscles, weight loss, preventing cardiovascular diseases and aging.
But if you think that’s all there is to exercise, you are largely mistaken. A new study reveals it may benefit the brain function in older adults, and prevent or delay the onset of dementia.
Brain Effects of Exercise
In a paper published in the Journal of Alzheimer’s Diseases, researchers revealed that exercise was associated with a change in the blood flow in key regions in the brain. This, in turn, resulted in an improved cognitive performance in a group of healthy older adults and a group diagnosed with mild cognitive impairment (MCI).
The researchers had two groups of older adults go through an exercise training program. The program consists of 30-minute sessions of moderate-intensity treadmill walking or aerobic exercises, four days per week for a total of 12 weeks.
One group was composed of those with mild cognitive impairment while another was composed of healthy older adults without MCI. Before and after the program, the participants underwent aerobic fitness testing, neuropsychological assessment, and an MRI scan.
Both groups yielded positive results. The healthy group had increased cerebral blood flow in the frontal cortex after 12 weeks, which significantly improved their performance on cognitive tests.
On the other hand, the MCI group had decreased cerebral blood flow in the left anterior cingulate cortex and left insula after 12 weeks. This resulted in their improved performance on a test used to measure memory and cognitive health.
How Reduced Blood Flow Increases Brain Function
According to Dr. J. Carson Smith, associate professor in the Department of Kinesiology in the University Of Maryland and one of the authors of the study, when we begin to experience subtle memory loss, the brain responds to the crisis by trying to “compensate” the inadequate brain function by increasing the blood flow.
However, while increased cerebral blood flow can be beneficial in normal brain situations, in those diagnosed with MCI, it gives the opposite effect. Dr. Smith states that there is evidence that it may bring further memory loss to those in the very early stages of Alzheimer’s Disease.
Dr. Smith explains the result of the study:
“A reduction in blood flow may seem a little contrary to what you would assume happens after going on an exercise program. But after 12-weeks of exercise, adults with MCI experienced decreases in cerebral blood flow. They simultaneously improved significantly in their scores on cognitive tests.”
These findings provide evidence that exercise can improve brain function in older adults—whether or not their cognitive abilities are already in decline.
Dr. Smith added that that exercise can positively affect “biomarkers of brain function in a way that might protect people by preventing or postponing the onset of dementia.” He highlighted how exercise influences the brain’s neural networks which are linked to memory loss and amyloid accumulation—both signs of MCI and Alzheimer’s.